Education and workforce development for securing Estonia's hydrogen future

Tartu Hydrogen Days 2025

Mare Roosileht

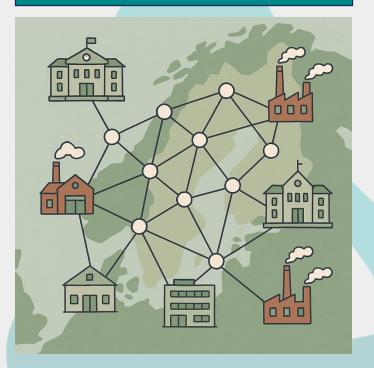

Director, TalTech Virumaa College

Regional coordinator, H₂CoVE project (Estonia)

Lead of the Just Transition Fund Research measure consortium

mare.roosileht@taltech.ee

Hydrogen Centres of Vocational Excellence


Equip Europe's workforce with high-quality vocational skills for the growing hydrogen economy

- Duration: 2024 2028
- Deliver courses for the hydrogen sector and building regional vocational centers (ecosystem)

Hydrogen Courses

Regional and European Networks

Pictures: Made by ChatGPT

Partners and target groups

19 partners from 5 regions

People	Workers, students, teachers, trainers, people outside the workforce, people with fewer opportunities, young people, researchers, policymakers, career advisors, the general public.		
Organisations	Vocational schools, higher education institution hydrogen businesses, SMEs and industry, cares government, national authorities and agencies Organisations, and business hubs.	er services, scien	ce parks, local

Goal: Build regional Hydrogen Vocational Excellence Centres (HIVEs) and deliver education, training, and reskilling programs for the hydrogen value chain.

Austria

Estonia

Northern **Netherlands**

Precarpathian region; Ukraine

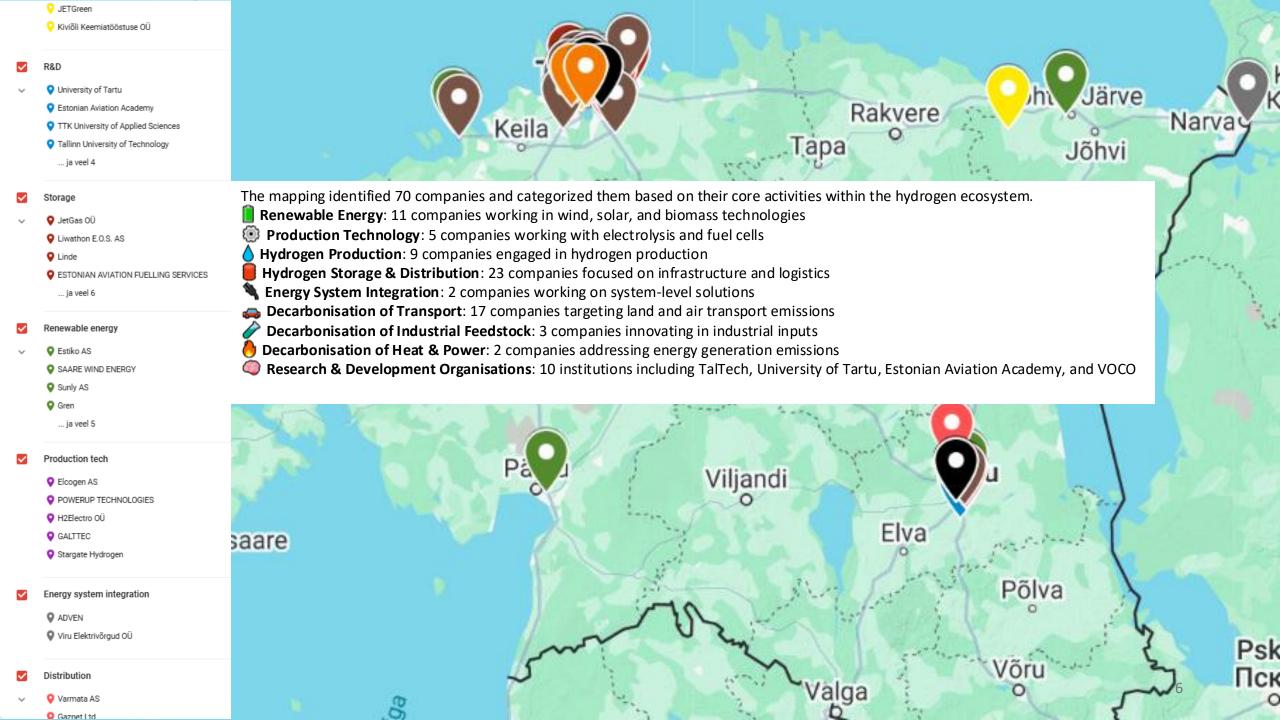
Why hydrogen skills matter for Europe's Green Transition

- Hydrogen is a key enabler of decarbonisation, energy security, and industrial innovation.
- A skilled workforce is essential to meet government and industry targets.
- Currently, skills gaps exist across the entire value chain from production to storage and end-use.
- H₂CoVE builds a European knowledge and training ecosystem that connects VET, universities, and industry.
- Knowledge transfer between countries bridges missing expertise and accelerates business investments.

Building hydrogen competence in Estonia

Regional coordinator: TalTech Virumaa College

- Partners:
 - Estonian Aviation Academy
 - Tartu Vocational College (VOCO)
 - Skycorp Technologies
- Focus areas:
 - Mapping national hydrogen competence and labour needs
 - Developing new hydrogen-related curricula and training modules
 - Creating collaboration between education, research, and industry
 - Supporting regional energy transition and defence-related applications



HYDROGEN LAB

Mapping hydrogen skills scross Europe – WP3 approach

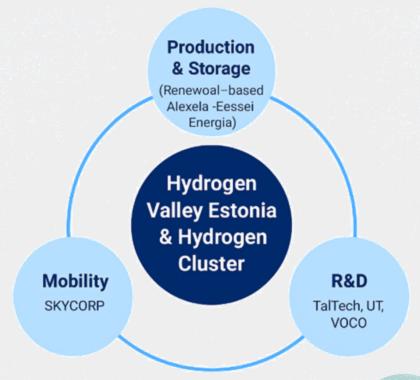
Methodology – 5 Tools:

National & EU hydrogen strategies, education reports

Job board monitoring
Mapping emerging
occupations

Online surveys
Industry feedback on
skill needs

Interviews
Stakeholders &
employers across
value chain


Stakeholder
validation
Regional workshops
to confirm findings

Goal: Identify current and future hydrogen-related skills for VET and higher education and prepare regional roadmaps for course development in WP5.

Emerging hydrogen economy in Estonia

- ~40 organisations involved in production, storage, logistics, and R&D
- Key drivers: Hydrogen Valley Estonia & Hydrogen Cluster
- Focus sectors: renewable-based H₂ production (Alexela, Eesti Energia),
 mobility (SKYCORP), and R&D (TalTech, UT, VOCO, EAVA)
- National Hydrogen Roadmap → 2035 targets: pilot → industrial scale
 → export readiness
- Strong collaboration between research, education, and SMEs yet
 limited workforce base and formal training pathways

Current hydrogen education and research in Estonia

Institutions & Activities:

• TalTech Virumaa College: modules in Sustainable Chemical Technologies &

Green Energy Systems (electrolysis, storage, system integration)

- Tartu VOCO: vocational modules on hydrogen compression, storage, distribution
- **University of Tartu:** materials & electrochemistry research, hydrogen production
- Estonian Aviation Academy: applied studies in hydrogen for aviation
- Metrosert Hydrogen Technologies Centre: applied testing & safety R&D

Gaps identified:

- No dedicated hydrogen curricula or certification
- Fragmented research & limited lab infrastructure
- Lack of short courses for technicians and engineers

Skills for Estonia's hydrogen transition

Industry demand:

- Technical specialists for electrolyser operation, storage & transport systems
- Safety & certification knowledge
- Engineers for system design and integration
- Digital skills automation, sensors, data monitoring

Education gaps:

- Training not yet aligned with industry demand
- Need for hands-on modules, lab practice, and micro-credentials
- Collaboration between universities, VET schools and companies essential

Recommendation:

Develop modular learning pathways combining vocational, higher education, and lifelong learning.

Skills required across the hydrogen value chain

The transition to a hydrogen-based economy requires a comprehensive approach to workforce development. From basic safety awareness to advanced system integration, each stage of the hydrogen value chain demands specific competencies and training programs. Estonia stands at a critical juncture—well-equipped with strong research capabilities, yet facing significant gaps in practical, technician-level education infrastructure.

	<u>[7:7]</u>	
H₂ Basics	Production	
Fundamental awareness and safety protocols	Electrolysis and generation systems	
Compression	Storage	
Pressure management and equipment	Safe containment and handling	
	<u> </u>	
Distribution	Usage	
Transportation and logistics systems	End-use applications and integration	
3	ÿ	
Policy	Cross-cutting	
Regulatory framework awareness	System-wide competencies	

Estonia's current position: Strong research foundation at university level, but fragmented training landscape and critical shortage of vocational education programs for technicians and operators.

Key training gaps & priority interventions

An analysis of Estonia's hydrogen training landscape highlights four critical domains requiring urgent development. The goal is to establish flexible, EU-aligned (EQF) programs that support upskilling and reskilling across the workforce.

1. Hydrogen Fundamentals (EQF 4-6)

Basic understanding of hydrogen properties, safety, and applications is essential to ensure a common knowledge base across all workforce levels.

Duration: 40–80 hours | Target: All workforce levels

2. Electrolyser Operation & Safety (EQF 4–5)

Hands-on training needed for electrolyser operation, maintenance, and safe integration with renewable systems.

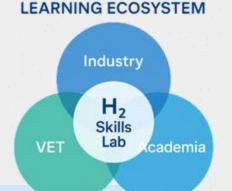
Duration: 120–200 hours | Target: Technicians, operators

3. Hydrogen Storage & Logistics (EQF 5–6)

Skills required in compression, liquefaction, transport regulations, and supply chain optimization.

Duration: 80–160 hours | Target: Technical specialists

4. Market & Policy Frameworks (EQF 6–7)


Advanced module covering EU hydrogen strategy, certification requirements, and business models to support investment decisions.

Duration: 60–120 hours | Target: Project managers, energy experts

All programs require industry co-creation, practical learning environments, and collaboration between universities and vocational schools to ensure relevance and long-term sustainability.

Cross-cutting skills and infrastructure needs

Beyond domain-specific technical knowledge, Estonia's hydrogen workforce requires a robust ecosystem of practical learning environments and flexible credential pathways. The infrastructure for hands-on training is as critical as the physical infrastructure for hydrogen production and distribution itself.

Hands-on learning facilities

Development of dedicated hydrogen laboratories equipped with electrolysers, storage systems, fuel cells, and comprehensive safety equipment. Simulators and demonstration rigs enable safe practice with realistic scenarios before working with actual hydrogen systems.

Micro-credential programs

Creation of modular, stackable short courses that allow working professionals to upskill without leaving employment. These credentials should align with European standards and be recognized across industries for maximum workforce mobility.

Ecosystem collaboration

Systematic cooperation among universities (research and theory), vocational schools (practical skills), and industry partners (real-world application). This triangle ensures training addresses actual market needs while maintaining academic rigor.

"Education infrastructure is as critical as pipelines—without trained operators and technicians, even the best hydrogen systems cannot function safely or efficiently."

The Learning Ecosystem Model

Effective hydrogen workforce development requires breaking down traditional silos between academic institutions, vocational training centers, and industry. A coordinated national approach ensures that theoretical knowledge, practical skills, and workplace experience are seamlessly integrated. Central to this ecosystem are shared H₂ Skills Labs — physical spaces where all stakeholders can collaborate on curriculum development, conduct joint training programs, and pilot innovative teaching methodologies.

These labs should serve multiple functions: initial training for students, upskilling for current workers, certification testing, and research into improved training methods. By pooling resources and expertise, Estonia can create world-class training capabilities despite its smaller scale compared to larger EU nations.

Strategic implementation principles

Successfully building Estonia's hydrogen workforce requires adherence to four foundational principles that ensure training programs remain relevant, practical, scalable, and collaborative. These principles should guide all curriculum development, infrastructure investment, and partnership formation in the coming years.

Industry Co-creation

Curriculum must be developed in direct partnership with hydrogen companies, equipment manufacturers, and end-users. Industry input ensures that training addresses real operational challenges, uses current technology platforms, and prepares graduates for actual job requirements rather than theoretical scenarios.

- Regular industry advisory board meetings
- Company participation in lab design
- Joint apprenticeship programs

Modular Scalability

Training architecture should use stackable micro-credentials that enable flexible learning pathways. Workers can acquire specific competencies as needed, while students can progressively build comprehensive qualifications. This approach supports both rapid workforce upskilling and long-term career development.

- Short-format courses (5–20 hours)
- Clear progression pathways
- · Recognition of prior learning

Practice-Based Learning

Hydrogen safety and operations cannot be learned from textbooks alone. Training must include extensive hands-on experience with real systems, where safety procedures are practiced in realistic conditions and troubleshooting is carried out on actual equipment under expert supervision.

- At least 40% practical lab time
- Use of real equipment, not just simulations
- Development of an integrated safety culture

National Collaboration

Estonia's size is an advantage — it allows the creation of a unified national training network instead of duplicating regional programs. Shared standards, pooled infrastructure, and coordinated schedules maximize resource efficiency while ensuring consistent quality across all training providers.

- Single quality assurance framework
- Shared laboratory access protocols
- Unified credential recognition

Moving Forward Together

The opportunity before Estonia is significant: by acting now to build comprehensive hydrogen training infrastructure, the nation can position itself as a regional leader in green energy workforce development. The combination of strong research institutions, growing industry interest, and strategic geographic location creates ideal conditions for success.

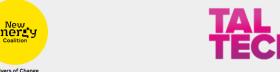
Implementation should begin immediately with pilot programs in existing facilities, followed by gradual expansion as industry demand grows. Early wins will build momentum and demonstrate value to potential funding sources and industry partners. The time to act is now—the hydrogen economy is emerging globally, and Estonia must ensure its workforce is ready to compete and lead.

Comparing regional roadmaps – common challenges

Region	Stage of development	Skills focus	Training gaps
Estonia	Emerging ecosystem	R&D, renewable integration	Vocational & technician training
Norway	Mature	Maritime, storage, logistics	Coordination across sectors
Netherlands	Advanced	Industrial clusters, hydrogen safety	Upskilling for large-scale deployment
Austria	Intermediate	Green mobility, fuel cells	Modular lifelong learning
Ukraine	Early-stage	Pipeline & materials R&D	Foundational training & policy support

Despite different maturity levels, all regions face workforce shortages and need integrated hydrogen education systems.

The partners



Hydrogen Centres of Vocational Excellence

Thank You!

