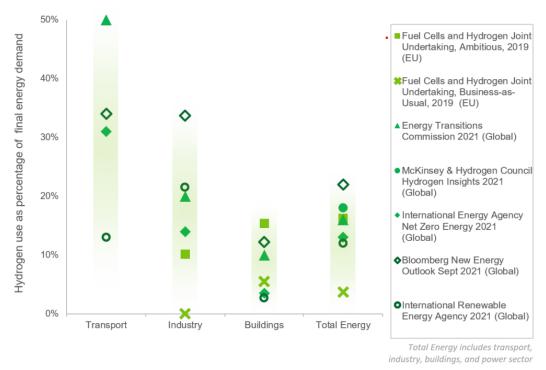
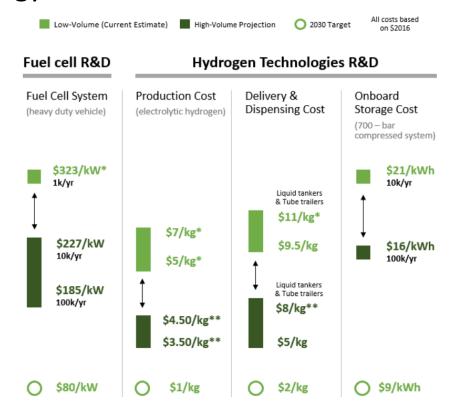

High-density confinement of H₂ in ultramicroporous carbon materials


Assoc. Prof. Rasmus Palm
Institute of Chemistry
University of Tartu
Tartu, Estonia
rasmus.palm@ut.ee

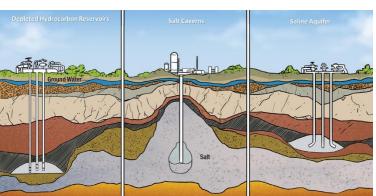


H₂ and its future role in economy

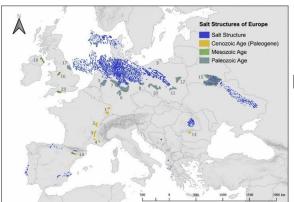
- H₂-based or -supported systems vital for greenhouse gas emission free economy
- A global need of at least 100 Mt of H₂ production by 2030 envisioned to meet climate goals
- 10 Mt + 10 Mt (H₂ production + import) in EU aimed by 2030 through REPowerEU Plan By 2050, renewable H₂ to cover around 10% of EU's energy needs.

U.S. National Clean Hydrogen Strategy and Roadmap, 2023

H₂ storage – staying stationary or going mobile


SITTERSITY OF TARREST SITERS TARREST SITERS TARREST TA

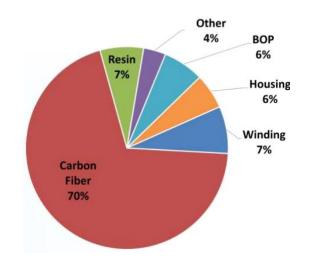
- Compressed (41 g_{H2}/L at 273.15 K and 700 bar)
 Used for mobile applications
 Compression and tank material requirements
- Liquefied (70 g_{H2}/L at 20 K)
 Mobile and stationary applications
 Liquefaction losses, boiloff
- Underground storage (up to 15 g_{H2}/L at 350 bar)
 Stationary applications
 Geographically restricted



Type IV H₂ tank for 700 bar (left) and 60 bar (right) storage M. Fiekiewicz et al., Hydrogen Onboard Storage HYTEC, QUADRHY technical datasheet Technologies for Vehicles, 2023

B. N. Tackie-Otoo et al., Fuel 356(15), **2024**, 129609

Liquid H₂ tanker Suiso Frontier

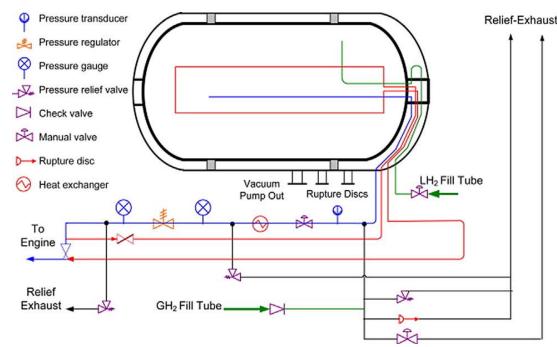

Liquefied H₂ tank at Kennedy NASA space center https://www.energy.gov/sites/default/files/2021-10/doe-perspectives-lh2.pdf

H₂ storage – cost of using contemporary solutions

Current H₂ storage situation:

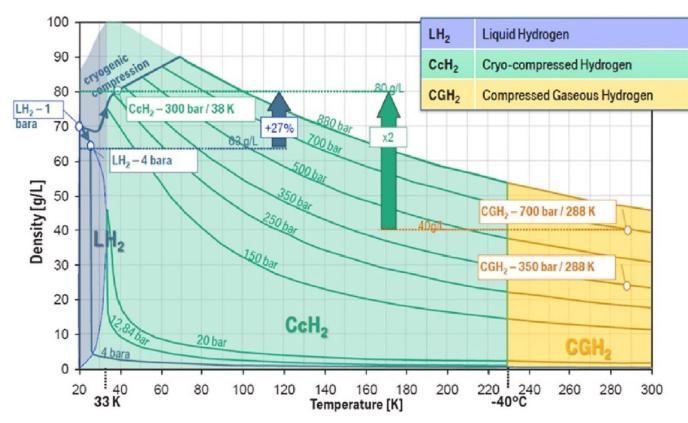
- "Cheap" solutions are localized
- Mobile solutions with high H₂ density are expensive

Cost breakdown of a Type 4 700 bar H₂ tank


C. Houchins et al., Hydrogen Storage Cost Analysis, 2022

Downstream: E 2030 Midstream costs if advances in distribution and storage technology are commercialized: Hydrogen distribution and storage assuming state-of-art technology at scale¹ Clean Hydrogen Production Commercialized, Industry **Ammonia** \$0.1/kg at 600 tpd. best-in-class 300 km, 12" OD Gas replacement gas compression \$0.1/kg Refining \$0.1/kg at ~5000 Transport \$0.2-0.4/kg at 80 bar for 7 days, tpd, 1000 km, 42" at 500 bar, 10 tpd 600 tpd OD (tank storage, truck Steel distribution) Salt cavern storage pipeline \$0.1/kg Chemicals at 80-120 bar, \$0.7-1.5/kg \$0.8 / kg 50 + tpd at 10 tpd, 250 km (pipeline, co-located at 500 bar for 7 days NG blending electrolysis) Compressed Gas phase gas tank trucking Industrial heat storage \$0.2/kg for 7 days, 50 \$0.2-0.3/kg **Power generation** \$2.7/kg at 50 tpd tpd scale at 50 tpd, 250 km Liquid Liquid **Aviation and** Liquefaction hvdrogen hvdrogen \$1 -3.6/kg maritime fuels storage truckina ≥700 kg/dav. 700 bar Data based on cost-downs shared from leading-edge companies who have Next generation **HDMD** road transport deployed at demonstration scale (or larger) fuel dispensing 2. Greater than or equal to 70% utilization, assumes line fill at high pressure at high utilization² Sources: HDSAM, Argonne National Laboratory; Hydrogen Council

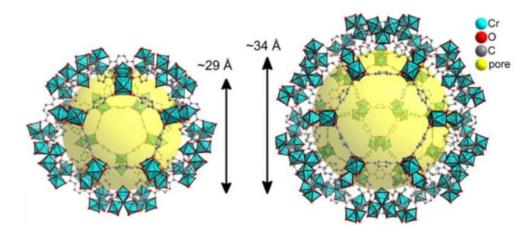
U.S. National Clean Hydrogen Strategy and Roadmap, 2023


Cryoompression of H₂

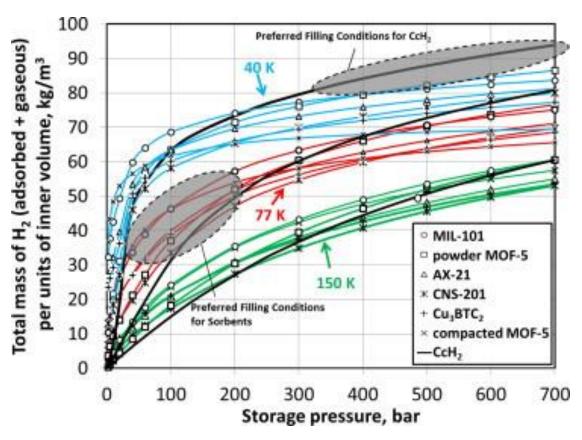
- Combination of compression and cooled-down H₂
- Up to $80 g_{H2} L^{-1}$
- Needs additional cooling over time or venting

Design schematic of a cryo-compressed H₂ storage system

G. Petitpas et al., Int. J. Hydrogen Energy 39, 2014, 10564

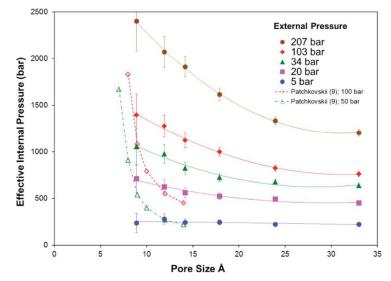

H₂ density vs pressure and temperature and regions corresponding to storage methods with pressure limits claimed by BMW in 2012

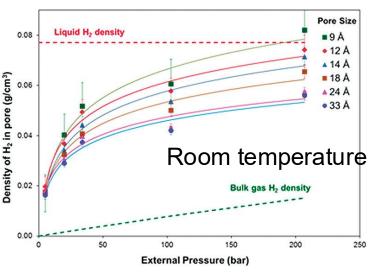
T. Zhang et al., Renewable Sustainable Energy Rev. 176, 2023, 113204


Cryoadsorption of H₂

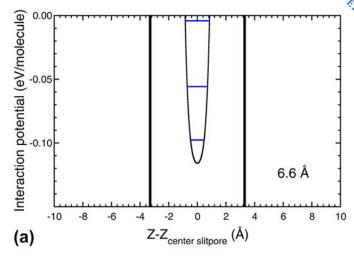
- Enhanced H₂ density from adsorption inside pores of a solid material
- Effect scales with temperature and pressure, like for compression
- Amount and characteristic of pores of critical importance for H₂ density

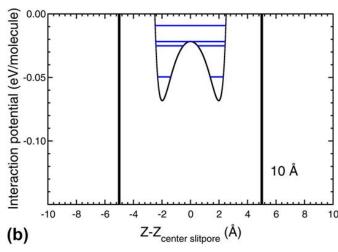
Two variety of crystalline structures of MIL-101 M. Zou et al., Int. J. Mol. Sci. 23(16), **2022**, 9396



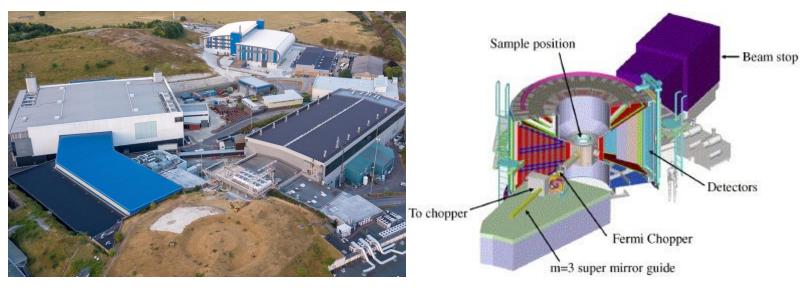

Volumetric H_2 density at different T and p conditions for cryocompression (Cc H_2) and –adsorption systems

G. Petitpas et al., Int. J. Hydrogen Energy 39(20), 2014, 10564


Cryoadsorption of H₂


- Pores with optimal size:
 - Confine H₂ effectively
 - Yield high H₂ densities at increased temperatuures
- Densities beyond that of liquid H₂ have been shown at room temperature
- Current limitations:
 - Nonscalable and noneconomic adsorbents
 - Nonuniform optimaal porosity throughout adsorbent

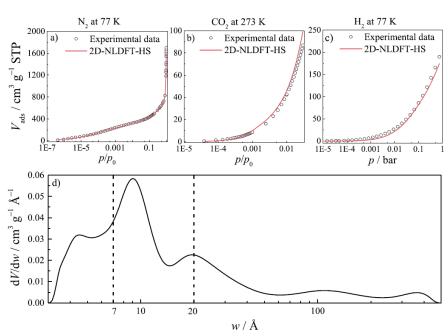
N. C. Gallego et al., J. Am. Chem. Soc. 133, **2011**, 13794 Tartu Hydrogen Days 2025


H₂ interaction potential modelled for pores with different widths

I. Cabria et al., Int. J. Hydrogen Energy 36(17), 2011, 10748

Looking for the solution

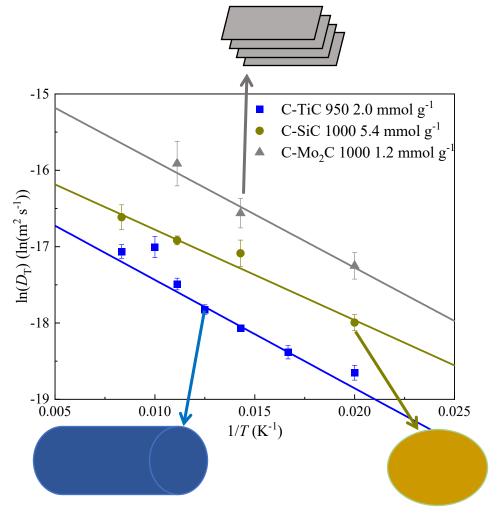
- IG32


 VALUERSITY OF TARKET OF TARKET
- Fundamental investigation of H₂ dynamics in different porous structure
 - Labsale and neutron scattering methods for full charaterisation

ISIS Neutron and Muon Source, UK

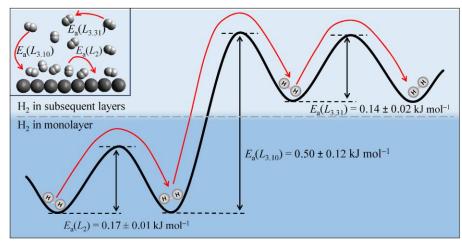
Merlin neutron spectrometer at ISIS

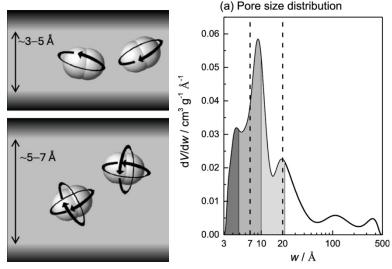
- Development of synthesis processes:
 - Use of sustainable carbon sources
 - Optimization of synthesis routines for optimal porosity



Combined modelling of three gas adsorption isotherms

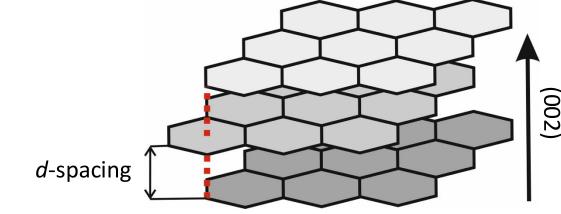
M. Koppel, et al., Carbon 219, 2024, 118799


Different pores effect on H₂ confinement

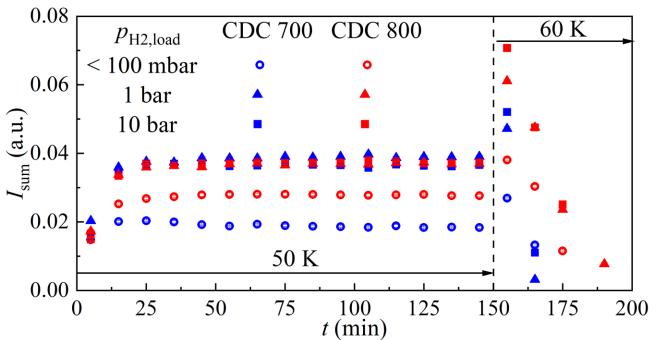

Effect of pore geometry on H₂ confinement

R. Härmas, et al., Carbon 155, 2019, 122

H₂ mobility in between adsorption layers



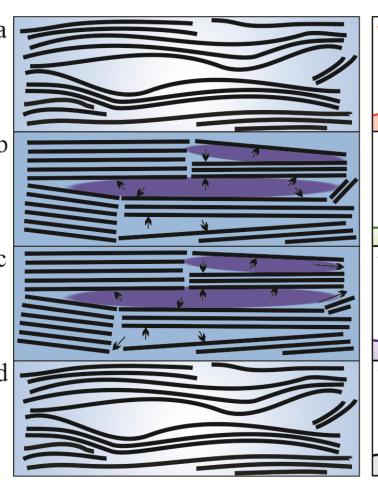


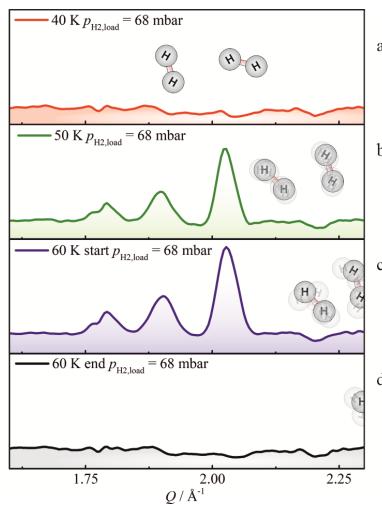

M. Koppel, et al., Carbon 219, **2024**, 118799M. Koppel, et al., J. Phys. Chem. C 129, **2025**, 4789

Effect of strong H₂ confinement on adsorbent

- The graphenic carbon structure orders:
 - At 50 K and under H₂ loading
 - Original graphenic structure restored at 60 K
 - Formed structure possible through internal H₂ pressure

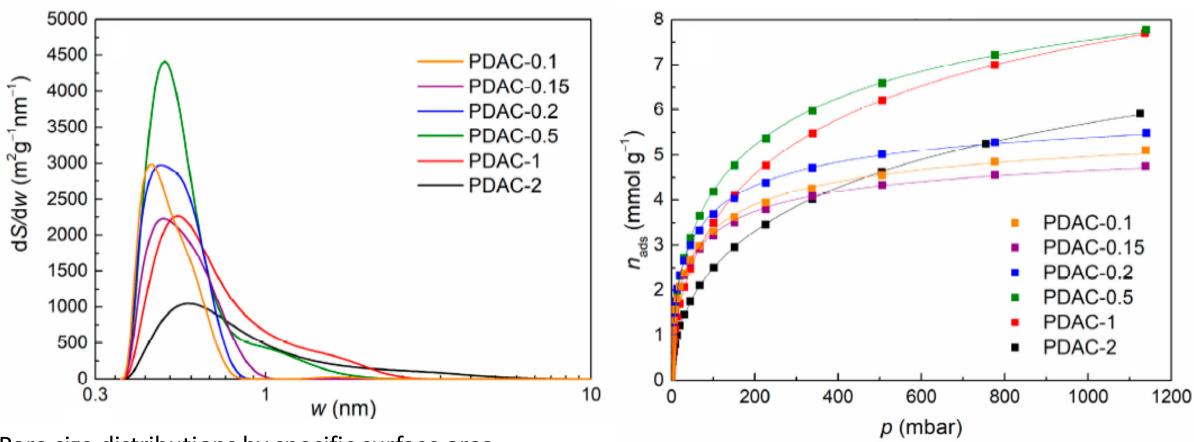
Summed up integrated intensities of the three Bragg peaks


M. Koppel, et al., Carbon 174, 2021, 190 10.10.2025


Effect of strong H₂ confinement on adsorbent

Reversible structural changes of adsorbent under H₂ loading:

- High density adsorbed H₂ phase at 20 K
- Kinetically limited desorption upon heating
- H₂ confined in ultramicropores causes internal pressure
- Upon further heating, additional internal pressure causes H₂ release and restoration of original structure


- a) $T \le 40 \text{ K}$ Disordered CDC Static H₂
- b) T = 50 KOrdered graphitic structure Slow H₂ dynamics
- c) T = 60 K (t = 0)Ordered graphitic structure Faster H₂ dynamics
- d) T = 60 K ($t \ge 50 \text{ min}$) Equilibrium Disordered CDC H₂ desorption

M. Koppel, et al., Carbon 174, 2021, 190

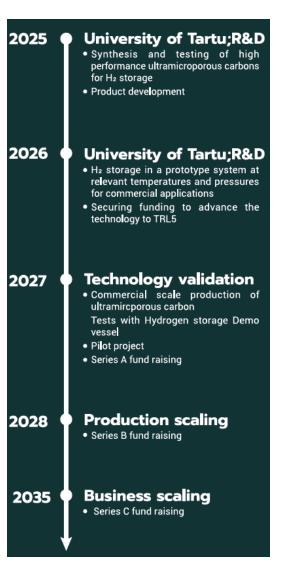
Synthesis of carbon-based H₂ adsorbents

- Dominantly ultramicroporous carbons
- Ultramicroporous carbons achieve surface fillment at lower pressure

Pore size distributions by specific surface area

H₂ adsorption isotherms obtained at 77 K

Making ideas into reality



H₂
Adsorb

- Collaboration between Estanc AS and University of Tartu towards developing cryoadsorption based H₂ storage solutions
- Sub-enterprise H2Adsorb formed under Estanc AS for commercialization
- Goal of achieving H₂ storage density equivalent to 350 bar pressurization at:
 - 40 bar and -80 °C
- Lowered pressurization and tank requirements thank to ultramicroporous adosrbent
- Sustainable carbon-based adsorbents

https://h2adsorb.eu/

Prototype H₂ storage system by Renee Kauler, Christen Haamer, and Sander Kahk

Thank you for listening! Would not be possible without wonderful collaborations

- Egert Möller
- Miriam Koppel
- Riinu Härmas
- Kenneth Tuul
- Maarja Paalo
- Tavo Romann
- Thomas Thomberg
- Heisi Kurig
- Enn Lust
- Many more

- Martin Månsson
- Frank Elson

Jacek Jagiello

Jaan Aruväli

- Mark Telling
- Manh Tu Le
- Tatiana Guidi

- Eneli Monerjan
- Margarita Russina
- Veronika Grzimek

Funding acknowledgment from projects: TK141; TK210; PUTJD957; PRG676; PSG935, TEM-TA81

10.10.2025